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KRAS mutation: from undruggable to druggable in cancer

Lamei Huang', Zhixing Guo', Fang Wang' and Liwu Fu'®

Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted
therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted
substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and
progression of cancer diseases. However, KRAS has been deemed a challenging therapeutic target, even “undruggable”, after drug-
targeting efforts over the past four decades. Recently, there have been surprising advances in directly targeted drugs for KRAS,
especially in KRAS (G12CQ) inhibitors, such as AMG510 (sotorasib) and MRTX849 (adagrasib), which have obtained encouraging
results in clinical trials. Excitingly, AMG510 was the first drug-targeting KRAS (G12C) to be approved for clinical use this year. This
review summarises the most recent understanding of fundamental aspects of KRAS, the relationship between the KRAS mutations
and tumour immune evasion, and new progress in targeting KRAS, particularly KRAS (G12C). Moreover, the possible mechanisms of
resistance to KRAS (G12C) inhibitors and possible combination therapies are summarised, with a view to providing the best regimen
for individualised treatment with KRAS (G12C) inhibitors and achieving truly precise treatment.
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INTRODUCTION

Kirsten rat sarcoma viral oncogene homologue (KRAS) is the best-
known oncogene with the highest mutation rate among all
cancers and is associated with a series of highly fatal cancers,
including pancreatic ductal adenocarcinoma (PDAC), nonsmall-cell
lung cancer (NSCLC), and colorectal cancer (CRC). The identifica-
tion of tumour driver genes and the development of specific
inhibitors have revolutionised cancer treatment strategies and
clinical outcomes. Numerous clinical results have shown that
targeted therapies significantly extend progression-free survival
and are less toxic than standard chemotherapy'™. For instance,
targeted therapies in patients harbouring epidermal growth factor
receptor (EGFR)-sensitive mutation or anaplastic lymphoma kinase
(ALK) gene fusion have markedly enhanced survival time, with a
median overall survival of 3 years or more*®. Unfortunately,
despite 40 years of proprietary drug efforts, there are still no
effective strategies targeting KRAS mutations, except for sotorasib,
which has just been approved to target the mutated KRAS
subtype KRAS (G12C). Due to the intrinsic characteristics of KRAS
proteins, targeting KRAS has been considered to be quite
challenging. Therefore, many efforts have focused on indirectly
targeting KRAS, including targeting its downstream signalling
effectors’, epigenetic approaches such as telomerase inhibitors®
and RNA interference® and synthetic lethality approaches, such as
cyclin-dependent kinase inhibitors'®. However, most of these
strategies have failed due to a lack of activity or selectivity. In
addition, patients with KRAS mutations usually have a poor
response to current standard therapy''. There has been an urgent
and unmet need to target KRAS mutations in KRAS-driven cancer.
Recently, there has been light on the horizon for one specific
mutation, KRAS (G12Q). With the discovery of a new allosteric site
of KRAS (G12C), several irreversible covalently binding inhibitors of
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KRAS (G12C) have emerged, raising the hope of drugging KRAS. In
this review, the latest research progress on KRAS, the character-
istics of KRAS mutations, the relationship between the KRAS
mutations and tumour immunity, and the targeted research
progress of KRAS, especially KRAS (G12C), are summarised.
Furthermore, the potential mechanisms of resistance to KRAS
(G12C) inhibitors and promising combination strategies to
determine the best-individualised treatment regimen are outlined.

KRAS AND SIGNAL TRANSDUCTION

Introduction to KRAS

The KRAS gene is a member of the rat sarcoma viral oncogene
family (RAS), which includes two other isoforms in humans: the
Harvey and neuroblastoma rat sarcoma viral oncogenes (HRAS,
NRAS). In 1982, Weinberg and Barbacid isolated a gene from
human bladder cancer cell lines. Subsequently, this gene was
identified as a human homologue of the RAS gene, named
HRAS, located on the short arm of chromosome 11
(11p15.1-11p15.3)"% In the same year, another homologue was
found in human lung cancer cells, called KRAS, located on the
short arm of chromosome 12 (12p11.1-12p12.1). The last gene,
called NRAS, is found in human neuroblastoma and is located on
the short arm of chromosome 1 (1p22-1p32)'*'>. RAS genes are
evolutionarily conserved with similar structures and are com-
posed of four exons distributed on the full length of approxi-
mately 30 kb DNA. The KRAS gene encodes two highly related
protein isoforms, KRAS-4B and KRAS-4A, which consist of 188 and
189 amino acids, respectively, due to different clipping of the
fourth exon'®. The other two RAS proteins all contain 189 amino
acids. The term KRAS is generally referred to as KRAS-4B due to
the high level of mRNA encoding KRAS-4B in cells'’. The crystal
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structure of RAS reveals six beta strands and five alpha helices’®.
which form two major domains: a catalytic domain called the G
domain and a hypervariable region (HVR)'®. The G domain
consists of three regions: switch |, switch Il, and the P loop, which
binds guanine nucleotides and activates signalling by interacting
with effectors. The HVR comprises the CAAX motif related to
membrane localisation?®. From the perspective of function, RAS
is a kind of membrane-bound regulatory protein (G protein)
binding guanine nucleotide belonging to the family of guano-
sine triphosphatases (GTPases)?'. RAS functions as a guanosine
diphosphate (GDP)/triphosphate (GTP) binary switch, which
controls important signal transduction from activated membrane
receptors to intracellular molecules®? The binary switch is mainly
determined by two kinds of regulatory proteins: guanine
nucleotide exchange factors (GEFs) such as son of sevenless
(S0OS) and GTPase-activating proteins (GAPs) such as neurofi-
bromin 1 (NF1)%. In the resting state, KRAS normally binds with
GDP in an inactivated state due to the intrinsic GTPase activity of
KRAS, which is able to hydrolyse GTP to GDP?**. When the cells
receive the relevant stimuli, such as the interaction of EGF and
EGFR, the KRAS-GDP complex appears to have a decreased
affinity of KRAS with GDP in the presence of GEFs, and then GDP
is replaced by GTP, which has a higher affinity and an
approximately 10-fold higher cellular concentration than
GDP?>. KRAS-GTP binding acquires an altered conformation in
switches | and Il of the G domain, and then KRAS is activated and
binds to its downstream molecules as a monomer or dimer to
mediate a series of signalling cascades. In contrast, GAPs
promote the binding between GDP and KRAS by enhancing
the GTPase activity of KRAS, thus maintaining the inactive state
of KRAS (Fig. 1)%.

KRAS signalling

KRAS proteins function as a finely regulated molecular switch that
controls multiple signalling cascades by cycling between activated
and inactivated conformations. KRAS proteins can be activated by
growth factors, chemokines, Ca®" or receptor tyrosine kinase
(RTK). Activated KRAS protein can activate multiple signalling
pathways, including the rapidly accelerated fibrosarcoma (RAF)-
mitogen-activated protein kinase (MEK)-extracellular regulated
protein kinases (ERK) signalling pathway, phosphoinositide
3-kinase (PI3K)-protein kinase B (AKT)—mammalian target of
rapamycin  (mTOR) signalling pathway, and other signalling
pathways, revealing a wide range of KRAS communications with
multiple signalling pathways.

The upstream regulation of KRAS

GRB2-S0S1 complex. Many growth factors, such as epidermal
growth factor (EGF), platelet-derived growth factor (PDGF) and
fibroblast growth factors (FGFs), activate receptor tyrosine kinases
(RTKs) and then activate KRAS proteins through intermediary
molecules. A typical example is the interaction of EGF with EGFR,
which results in the dimerisation and cross-phosphorylation of
EGFR?’. Phosphorylated EGFR is bound by growth factor receptor-
bound protein 2 (GRB2), an adaptor molecule, through their
respective SH2 domains. GRB2 consists of one SH2 domain and
two SH3 domains, of which the SH3 domain is capable of binding
SOS1, a kind of GEF. Activated SOS1 promotes the binding of GTP
and KRAS and converts KRAS from an inactive state to an active
state. As mentioned earlier, KRAS states are tuned primarily to
GEFs/GAPs. Therefore, molecules upstream of KRAS mainly
mediate the activation or inactivation of KRAS by regulating these
two types of molecules. The signalling cascades mediated by the
KRAS-GTP complex were thought to occur only within the cell
membrane in the past. Recently, Tulpule and his colleagues
revealed another novel, membrane-independent approach to
activate KRAS?. Some fusion proteins containing RTKs, such as
EML4-ALK, can combine with GRB2 and SOS to form
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membraneless cytoplasmic protein granules to actively activate
KRAS and activate downstream signals. Notably, this approach is
similar but not identical to phase separation.

RAS-GRF1. RAS protein-specific guanine nucleotide releasing factor
1 (RAS-GRF1) is another GEF and is expressed primarily in the brain.
In mature neurons, RAS-GRF1 connects signals from glutamate
receptors, such as N-methyl-D-aspartic acid receptor (NMDAR) to
KRAS, thereby promoting the downstream MAPK/ERK cascade
reaction®®. The ability of RAS-GRF1 to activate KRAS was significantly
enhanced with increasing Ca®" concentration, revealing the internal
communication and mutual regulation between KRAS signalling and
Ca®" signalling as well as metabolism®**'. In addition, chemokines
can activate protein kinase A by producing cAMP after binding to
chemokine receptors on the cell membrane. Activated protein kinase
A can activate RAS-GRF1 through phosphorylation, thereby promot-
ing the transformation of KRAS into an active state®”,

SHP2. In addition to the GEFs mentioned above as a key
molecule in KRAS activation, Src homology phosphatase 2 (SHP2)
plays an integral role in KRAS activation®***. SHP2 is a protein
tyrosine phosphatase (PTP) containing Src homology 2 (SH2)
domains and is encoded by PTPN11°°. Unlike most PTPs,
numerous studies indicate that SHP2 functions in the activation
of intracellular signalling pathways, particularly the KRAS/ERK
pathway**. SHP2 is a common signalling button that mediates
numerous receptor tyrosine kinase signals to KRAS-ERK signal-
ling®®. On the one hand, SHP2 can promote the recruitment of the
GRB2-SOS1 compound to the receptor. Studies have identified
some phosphorylation sites of SHP2 as the major binding site for
GRB2, such as tyrosine 542 and 580 of SHP23’. SHP2 therefore acts
as a scaffolding effect in GRB2 recruitment. On the other hand,
SHP2 catalytic activity was required to promote the activation of
KRAS through the dephosphorylation of the SHP2 substrate®®,
Some dephosphorylation substrates of SHP-2 have been shown to
promote KRAS activation. There are also many negative regulatory
molecules involved in KRAS activation, such as p120-RASGAP, a
GTPase-activating protein. RASGAP has been shown to be a target
for SHP2. SHP2 dephosphorylates the p120-Rasgap junction and
regulates the recruitment of p120-RASGAP near KRAS, thus
relieving the negative regulatory effect of p120-RASGAP*°, In
addition to p120-RASGAP, SHP2 plays a signalling role by
dephosphorylating other molecules, including negative regulators
of Sprouty and activators of Src, through the dephosphorylation of
Src-regulatory proteins®'#,

The KRAS-mediated signalling pathway

The RAF-MEK-ERK pathway. The RAF-MEK-ERK pathway is the
canonical downstream target of KRAS signalling®®. Activated KRAS-
GTP can recruit rapidly accelerating fibrosarcoma (RAF), a serine/
threonine-specific protein kinase, from the cytoplasm to the plasma
membrane, induce conformational changes in RAF and promote the
activation of RAF by homologous or heterologous dimerization™.
The C-terminal catalytic domain of RAF binds to MEK1/2 and
activates it by phosphorylation. MEK1/2 phosphorylates and activates
ERK1/2, and activated ERK phosphorylates ribosomal S6 kinase (RSK),
serum response factor (SRF), E26 transformation-specific transcription
factors (ETS) and ETS like-1 protein to regulate the transcription and
translation of corresponding target genes, thus participating in the
regulation of cell proliferation, differentiation, migration and other life
activities™°,

The PI3K-AKT-mTOR pathway. KRAS was also found to be involved
in the PI3K-AKT-mTOR pathway, which is considered to play an
important role in cell life activities such as cell proliferation,
differentiation, apoptosis and glucose transport and has a great
influence on the generation of tumour resistance®’. Activated KRAS
can activate PI3K by binding to its p110 subunit. Activated
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Fig. 1 The structure and function of KRAS. a According to homology, KRAS, which consists of 188/189 amino acids can be divided into three
parts. The first part consisting of the first 85 amino acid residues is a highly conserved region. The next 80 amino acid residues are defined as a
second part where homology between any pair of human RAS genes is 85%. A third part is a highly variable region and homology is only 8%.
KRAS forms two major domains: a catalytic domain called the G domain and a hypervariable region (HVR). The G domain consists of three
regions: switch |, switch Il and the P loop, which binds guanine nucleotides and activates signalling pathway by interacting with effectors. The
HVR consists of a membrane-targeting domain containing the CAAX motif where C is a cysteine, A is any aliphatic amino acid and X is any
amide acid, which acquires lipids by farnesyl or prenyl modification. b The normal function of KRAS depends on the membrane localisation of
its post-transcriptional modification, which is mediated by a series of enzymes. KRAS functions as a guanosine diphosphate (GDP)/
triphosphate (GTP) binary switch, which controls important signal transduction from activated membrane receptors to intracellular molecules.
The binary switch is mainly determined by two kinds of regulatory proteins: guanine nucleotide exchange factors (GEFs) and GTPase-
activating proteins (GAPs). FTase: farnesyltransferase; GGTase: geranyl geranyltransferase; RCE1: RAS-converting enzyme 1; ICMT:
isoprenylcysteine carboxyl methyltransferase; PDES: phosphodiesterase &
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PI3K-catalysed phosphatidylinositol 4,5-bisphosphate (PIP2) is
converted to phosphatidylinositol 3,4,5-trisphosphate  (PIP3)*%,
PIP3 promotes phosphoinositide-dependent kinase 1 (PDK1) to
phosphorylate AKT at Thr308. mTOR complex 2 further phosphor-
ylates the serine phosphorylation site of AKT (Ser473), resulting in
full AKT activation®. Activated AKT enters the nucleus, activates or
inhibits many downstream pathways, and regulates cell prolifera-
tion, apoptosis and metabolic processes®’. On the one hand, AKT
can directly activate mTOR target proteins, which play an
important role in cell proliferation, survival, metabolism, protein
synthesis, and transcription®'. On the other hand, AKT phosphor-
ylates and activates Bcl-XL/Bcl-2-associated death promoters
(BADs), facilitating the binding of BAD to the companion protein
14-3-3 instead of Bcl-2/Bcl-XL, thus inhibiting apoptosis>2.

Other signalling pathways. RAL guanine nucleotide dissociation
stimulator (RalGDS) is a downstream signalling protein of KRAS
that functions as a GTP/GDP exchange factor to promote the GDP/
GTP conversion of RAS-like protein (RAL)*3>7°>. Downstream
effector factors of RAL proteins include Rac/cell division cycle 42
(Cdc42) associated with cell migration, TANK binding kinase 1
(TBK1) associated with viral immunity, and phospholipase D (PLD)
associated with endocytosis. KRAS also regulates TIAM1 and RAC1-
specific guanine nucleotide exchange factors, to activate
RACT signalling pathways that affect cell shape, migration,
adhesion, actin cytoskeleton formation, endocytosis, and mem-
brane trafficking®. In addition, KRAS can also regulate phospha-
tidylinositol signal pathway by activating PLCe*”. In short, KRAS-
mediated signal networks are complex and related to a variety of
life activities (Fig. 2).

KRAS MUTATIONS AND CANCER

Mutation characteristics of the oncogene KRAS

KRAS is the most commonly mutated member of the RAS family
and is considered to be the most common oncogenic gene driver
in human cancers®®*°. KRAS mutations are most common in
PDAC, CRC, and NSCLC. The profile of KRAS mutations differs
significantly among different cancer types (Table 1). KRAS
mutations are dominated by single-base missense mutations,
98% of which are found at codon 12 (G12), codon 13 (G13), or
codon 61 (Q61)%°. Notably, KRAS mutations occur in many cancers
with different mutation frequencies, but there is also a large
variation in mutation subtypes (Fig. 3a, b). For example, in NSCLC,
KRAS mutations account for 20.4% of KRAS, and the dominant
substitution is G12C (glycine (GGT) to cysteine (TGT)), while KRAS
mutation accounts for up to 67.6% of KRAS in pancreatic
adenocarcinoma, and KRAS (G12D) is the dominant mutant
subtype. It is important to note that the mutation rate of KRAS
in the pancreas was 67.6% based on this acquired data analysis,
which is lower than the commonly cited 90%. The incidence of
KRAS mutations between 25 and 35% in smokers and 5% in
nonsmokers has been reported, and smoking is usually considered
to be a relevant factor®'. Furthermore, the profiles of KRAS
mutations are distinct in smokers and nonsmokers, and not all
mutations in KRAS are driver mutations. For instance, KRAS (G12QC)
is usually found in heavily smoking patients, while KRAS (G12D) is
more usually identified in tumours from nonsmoking patients®?.

Biochemical heterogeneity of KRAS mutations

The conventional understanding of KRAS mutations is that
alterations in KRAS proteins caused by mutations impede the
interaction of KRAS with GAPs and the hydrolysis of GTP bound to
KRAS, leaving KRAS in a constitutively active state®>®*. Numerous
studies have shown biochemical heterogeneity of KRAS mutations
in various aspects, including intrinsic GTPase activity and the
affinity of effectors and metastatic sites. For instance, alterations in
codons 12, 13, and 61 usually lead to impaired intrinsic GTPase
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activity of KRAS, distinct from KRAS (G12D), KRAS (G12C), and
KRAS (G13D)®. The type of KRAS mutation can also affect the
interaction with its effectors. Moreover, KRAS (G12) and KRAS
(Q61) are insensitive to neurofibromin 1-mediated hydrolysis,
whereas KRAS (G13) is partially sensitive to neurofibromin 1, a kind
of GAP®. In addition, cells containing KRAS (G12C) or KRAS (G12V)
have increased levels of RAS-related protein (RAL) A/B signalling
and decreased levels of phosphorylation of protein kinase B (AKT)
compared with cells with other KRAS mutations or wild-type
cells®”. However, cell lines with KRAS (G12D) have higher levels of
phosphorylated AKT®®. According to the binding affinity of KRAS
with RAF, an important effector, the mutation can be divided into
two classes: high affinity (G12A, G12V, G12R, Q61H, and Q61L) and
low affinity (G12R, G12D, and G12V). Different KRAS-mutant
subtypes have different sensitivities to targeted therapy. For
example, a study performing high-fidelity CRISPR-based engineer-
ing found that KRAS (G12D) is sensitive to EGFR inhibition in
pancreatic cancer models, while KRAS (G12C) mutants selectively
respond only to covalent G12C inhibitors when EGFR is
inhibited®. In terms of metastasis, patients with KRAS mutations
have a greater opportunity for lung or brain metastases’®. Another
study revealed that patients harbouring G12V mutations often
have pleuropericardial metastases, while patients harbouring
G12C and G12D mutations usually have bone metastases’"”?.
Notably, not all KRAS-mutant tumours are KRAS-dependent
tumours. More relevant future studies are needed to expand the
heterogeneity map of KRAS mutations and provide a theoretical
basis for more accurate individualised treatments.

Comutations of KRAS mutations

In addition to the different mutation levels and mutation subtypes
in different cancer tissues, KRAS mutations may have different
comutations, which may influence the function of KRAS and the
occurrence and development of tumours. Analysing 1078 NSCLCs
harbouring KRAS mutations, 557 patients (53.5%) harboured
comutations, and of 14 analysed genes, tumour protein p53 gene
(TP53) mutation was the most common comutation, accounting
for 39. 4%, In addition, 101 patients in the above cohort were
analysed for an additional 14 genes, such as the serine/threonine
kinase 11 gene (STK11) and kelch-like ECH-associated protein 1
gene (Fig. 10)”3. Interestingly, the study indicated that EGFR
mutations were detected in KRAS-mutated NSCLC, albeit with a
very low frequency of less than 1%. This is controversial because it
is widely believed that EGFR and KRAS mutations are mutually
exclusive””>, In the future, larger amounts of clinical data will be
needed to draw more comprehensive and rational conclusions.
There were distinct biological behaviours in different subgroups,
altering outcomes in patients’®. For example, tumours with KRAS/
STK11 comutation commonly have a tumour microenvironment
(TME) with poor immune response, lacking CD8 -+ tumour-
infiltrating lymphocytes but including an abundance of T regulator
cells. However, CD8 + tumour-infiltrating lymphocytes and acti-
vated dendritic cells are rich, and there are few T regulator cells in
the TMEt with the KRAS/P53 comutation’’. In addition, clinical
evidence has shown that patients harbouring ALK or EGFR/KRAS
commutations respond poorly to tyrosine kinase inhibitor
therapy’®. In 11,951 Chinese tumour samples, KRAS mutations
accounted for 16.6%, of which KRAS (G12C) accounted for 14.5%.
Almost all patients (99.6%) with G12C mutations were associated
with genomic aberrations that were associated with the RAS/RTK
pathway’®. In general, when treating KRAS-driven tumours, it is
necessary to pay attention to other gene changes and pay
attention to individualised treatment (Fig. 3c).

KRAS mutations and TME

There is growing evidence that patterns of genetic changes
influence the immune environment of cancer. Increasing evidence
shows that KRAS mutations in tumours not only dedicate the
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Table 1. The frequency of KRAS mutations in cancer

KRAS mutations (%)
Tumour types Sample Total rate Mutation sites Top 1

G12 G13 Q61 A146 Other

Pancreatic adenocarcinoma 1207 67.61 62.30 0.83 4.23 0.08 0.17 G12D 26.84
Colorectal adenocarcinoma 3953 35.77 22.82 6.68 1.67 2.76 1.85 G12D 9.87
Nonsmall-cell lung cancer 7135 20.42 17.39 0.85 0.31 0.06 1.81 G12C 8.38
Cholangiocarcinoma 1072 12.69 8.96 1.12 1.12 1.87 0.37 G12D 4.29
Uterine endometrial carcinoma 1907 14.11 10.38 1.78 0.63 0.10 1.21 G12D 4.20
Testicular germ cell cancer 506 11.66 6.92 0.00 1.98 1.58 1.19 G12v 2.77
Cervical squamous cell carcinoma 607 4,28 247 0.99 0.00 0.49 0.33 G12D 1.32
Myelodysplastic 6940 3.83 1.86 0.75 0.29 0.23 0.71 G12D 0.84
Data sources from cBioPortal.org. G12: codon 12 encoding glycine; G13: codon 13 encoding glycine; Q61: codon 61 encoding glutamine; A146: codon 146
encoding

intrinsic characteristics of tumours, such as survival and prolifera-
tion but also form a tumour microenvironment (TME), especially
affecting immune cells in the TME and eventually resulting in
tumour progression and immune escape®®?'.

KRAS mutations and inflammatory TME

The TME in the presence of KRAS mutations often appears to be
inflammatory and infiltrated with multiple immune cells. This
inflammatory microenvironment is facilitated by high levels of a
series of inflammatory cytokine and chemokine factors mediated

Signal Transduction and Targeted Therapy (2021)6:386

by the KRAS signalling pathway®'~%3. The overactivation of KRAS
signalling has been shown to enhance the secretion of interleukin-
6 (IL-6), which is necessary for tumour initiation and progression
and is important for the crosstalk between tumours and
inflammation®¥%>, KRAS-induced IL-6 promoted the activation of
Janus activated kinase 1 (JAK1) and phosphorylation of signal
transducer and activator of transcription 3 (STAT3), contributing to
tumorigenic cellular processes in a variety of tumour types®®~%. In
pancreatic cancer, IL-6 not only promotes the occurrence and
progression of tumours through JAK1/STAT3 but also activates
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Fig.3 KRAS mutation in cancer. a The frequency of KRAS mutations across tumour types, including the mutation frequency of common sites
and the subtype with the highest mutation rate in different tumour types. KRAS mutations are characterised by single-base missense
mutations, 98% of which are found at codon 12, codon 13, or codon 61. Please refer to Table 1 for specific figures. b Specific mutant subtypes
and percentages were represented in the top three cancers with the highest mutation rates of KRAS including pancreatic cancer, colorectal
cancer, and nonsmall-cell lung cancer. ¢ Frequency of co-occurring aberrations in KRAS mutant cells. Only a mutant prevalence of at least 3%
is shown in addition to EGFR mutation, given the important effect of EGFR mutation on NSCLC. TP53: tumour protein p53 gene; DDR2:
discoidin domain receptor tyrosine kinase 2 gene; MET: MNNG HOST Transforming gene; PIK3CA: phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha gene; STK11: serine/threonine kinase 11 gene; KEAP1: kelch-like ECH-associated protein 1 gene; ATM: ATM
serine/threonine kinase gene, PIK3CG: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma gene; ERBB4: erb-b2 receptor
tyrosine kinase 4 gene; KDR: kinase insert domain receptor gene; KIT: KIT proto-oncogene receptor tyrosine kinase gene; NFE2L2 nuclear
factor erythroid 2, like 2 gene; PDGFR previous symbol of PDGFRB (platelet-derived growth factor receptor beta gene). Data acquired from The

Cancer Genome Atlas (pan-Cancer) from cBioPortal

reactive oxygen species through the ERK pathway®®. Studies have
also shown that IL-6 secreted by myeloid cells can promote
pancreatic intraeg)ithelial neoplasia progression and PDAC with
KRAS mutations®. IL-8 is also related to tumours and inflamma-
tion as a C-X-C motif chemokine receptor 2(CXCR2) ligand. IL-8 has
been identified as a transcriptional target for KRAS-mediated ERK
or PI3K signal transduction, affecting endothelial cell recruitment,
tumour-associated inflammation formation, and tumour angio-
genesis”?'. The role of inflammation in promoting lung cancer
has been shown to be mediated in part by activation of the IL-8/
CXCR2 pathway and subsequent neutrophil recruitment and
release of neutrophil elastase”’. KRAS/CXCR2 signalling in PDAC
has been shown to induce the generation of cancer-associated
fibroblasts with enhanced secretory function that mainly secrete
protumorigenic cytokines®?. In addition, KRAS has been reported
to be involved in the formation of PDAC and the development of
NSCLC by promoting the production of IL-1a and the activation of
IKKB/NF-kB?>4,

Several chemokines are involved in the proinflammatory TME.
Although elevated levels of C-C chemokine ligand 5(CCL5) were
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detected in a variety of tumours and were associated with tumour
progression, CCL5 also exhibited antitumour abilities by recruiting
T cells and dendritic cells to the TME. In KRAS-driven lung cancer,
the IKK-related kinases TBK1 and IKKe downstream of KRAS
signalling increased CCL5 levels®. KRAS mutations in pancreatic
acinar cells were able to upregulate intercellular adhesion molecule
1, resulting in chemical absorption by M1 macrophages®. M1
macrophages release stromal degrading enzymes, such as matrix
metalloproteinase-9 and cytokines such as tumour necrosis factor
(TNF), which contribute to the formation of an inflammatory
environment. Several KRAS-mutant TMEs showed increased Th17
cells and significantly increased IL-17 levels. For example, in
pancreatic KRAS mouse genetic models, increased numbers of
Th17 cells were observed in PDAC and participated in tumour
initiation and progression by the production of IL-17°”. Recently,
KRAS-mediated activation of NLRP3, which forms inflammasomes,
was shown to affect the pathogenesis of KRAS-driven myelopro-
liferation®®. In conclusion, this evidence supports that KRAS
induces an inflammatory TME and facilitates the occurrence and
development of tumours by inducing inflammation.
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Fig. 4 KRAS-mediated immune escape in tumour microenvironment. KRAS mediates immune escape in the tumour macroenvironment by
upregulating PD-L1expression, downregulating MHC1expression of tumour cells, and enhancing the secretion of a variety of cytokines and
chemokines to recruit immunosuppressive immune cells. The black arrow represents facilitation, and the opposite red arrow represents
inhibition. MDSCs: myeloid-derived suppressor cells; Treg cells: regulatory T cells; IL-10: interleukin-10; TGF-f: transforming growth factor-f;
GM-CSF: granulocyte-macrophage colony-stimulating factor; IL-23: interleukin-23

KRAS mutations and tumour immune escape

The TME of most solid tumours is infiltrated by multiple immune
cells, including T cells and macrophages. However, many of these
immune cells have been cultured in the TME and ultimately
possess immunosuppressive properties, such as regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), tumour-
associated macrophages (TAMs), neutrophils, and mast cells.
KRAS-mediated signalling plays an important role in the formation
of an immunosuppressive TME and the modification of immune
cells (Fig. 4)*°.

KRAS mutations mediate immune escape by regulating the
intrinsic characteristics of tumour cells. In KRAS-driven tumours,
mutant KRAS mediates tumour immune escape by upregulating
PD-L1 expression. There is growing evidence that KRAS (G12Q),
KRAS (G12V), KRAS (G12D), and KRAS (G13D) mutations are
associated with high PD-L1 expression in lung cancer'®'°", The
mutant KRAS signalling pathway upregulates the expression of
PD-L1 in tumour cells by improving the stability of PD-L1
mRNA'?2, Although the AU-rich binding protein tristerrolin (TTP)
reduced the expression of PD-L1 through AU-rich elements in the
PD-L1 mRNA 3'UTR, the MEK signal downstream of KRAS
phosphorylates and inhibits TTP, thus increasing the expression
level of PD-L1'%%. Another study reported another mechanism of
KRAS (G12V)-mediated upregulation of PD-L1 expression b;/
promoting ROS production and inducing FGFR1 expression'®.
After antioxidant treatment, PD-L1 expression in KRAS-mutant
cells was largely eliminated, and FGFR1 gene knockout also led to
reduced PD-L1 expression and impaired tumour growth in vivo'®,
Notably, the PD-L1 expression levels in CRC patients were not
significantly associated with KRAS mutations, unlike LAC. In
addition to affecting PD-L1 expression, KRAS mutation impacted
the immunogenicity of tumour cells by downregulating the
expression of major histocompatibility complex (MHC) class |
molecules in a CRC cell line with the KRAS (G13D) mutation'®.
MHC1 is essential for antigen presentation and antigen recogni-
tion by T cells. Downregulation of MHC 1 severely attenuated the
tumour killing effect of T cells, especially CD8 + cytotoxic T cells.
The knockdown of mutant KRAS (G12D) in a poorly immunogenic
CRC model improved the immune response and caused tumour
regression'%.

In addition to affecting tumour cells, KRAS mutations play an
immune evasion role by affecting immune cells in the TME, such
as the acquisition and recruitment of inhibitory phenotypes of
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immune cells. KRAS mutations induce CD4" T cells in the TME to
transform into immunosuppressive Treg cells by promoting the
secretion of related cytokines. The KRAS (G12C)-mediated
phenotypic transformation of T cells has been shown to be a
consequence of the secretion of IL-10 and TGF-31 mediated by
MEK/ERK/AP-1 signalling in CRC'®. In the KRAS transgenic lung
cancer model, the gene ablation of Treg cells resulted in inhibition
of the occurrence and progression of lung cancer, indicating the
necessity of Treg cells in the development of lung tumours'®’. In
addition, the KRAS (G12V) and KRAS (G12D) mutations enhanced
the infiltration of MDSCs in the TME by upregulating GM-CSF in
PDAC and CRC, thereby leading to antitumour immune
escape %1%, Another study has shown that KRAS (G12D) appears
to inhibit the secretion of interferon regulatory factor 2 (IRF2),
thereby promoting increased CXCL3 secretion, which acts on
CXCR2 on MDSCs, leading to MDSC migration to the TME''°.

In KRAS-mutated tumours, other oncogenes or tumour
suppressor genes may also be abnormal and may participate in
immune escape together with KRAS mutation. For example, in
lung cancer, coactivation of KRAS (G12D) and MYC drove the
aggregation of anti-inflammatory macrophages, but the absence
of T, B, and NK cells was due to the effect of CCL9 and IL-23""". In
PDAC, studies have shown that KRAS (G12D) and TP53 jointly
activate the ARF6/AMAP1 pathway, affect the level and
presentation of PD-L1, and promote tumour development and
immune invasion''?. Through the analysis of clinical data of LAC
patients, the expression of PD-L1 in tumours in the TP53/KRAS
comutation group was increased, and the proportion of CD8 +
T cells in TME was higher, which was consistent with the clinical
benefit of TP53, KRAS or TP53/KRAS-mutated cancer patients
after treatment with PD-1 inhibitors''>. In addition, patients with
STK11/LKB1 mutations were resistant to PD-1 inhibitors in KRAS-
mutant LAC, suggesting a new mechanism of resistance'®. In
general, KRAS comutations affect the immune regulation of the
KRAS-driven TME by recruiting immunosuppressive cells and
increasing PD-L1 expression.

Successfully targeting KRAS (G12C)

KRAS plays a central role in signal transduction, and KRAS
mutations are closely related to tumour initiation and develop-
ment. Successful targeting of mutant KRAS will lead to a new
platform for targeted oncology therapy. However, after nearly 40
years of effort, KRAS remains an unsolved puzzle. Due to the
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difficulty of direct targeting, researchers switched to other
important molecules in the KRAS signalling pathway, such as
RAF, ERK, and MEK. However, there has been no significant
success in KRAS-driven tumours. KRAS-mutant tumours have
obvious heterogeneity, which partly explains the poor efficacy of
nonspecifically targeting KRAS. Selective inhibitors targeting
specific KRAS mutations are urgently needed to effectively inhibit
different mutant KRAS functions in line with the requirements of
precision oncology.

The first signs of the dawn appear on the horizon for one
specific mutation, KRAS (G12C). Unlike KRAS (G12D) and KRAS
(G12V), KRAS (G12C) can maintain alternative interactions with its
downstream effectors through an active cycle between the GDP-
bound and GTP-bound states''®. This difference enables KRAS
(G120) to be locked into an inactive conformation by reacting with
cysteine residues. For instance, SML-8-73-1, a GDP analogue in
which beta phosphate binds an electrophilic chloroacetamide, can
covalently react with cysteine 12 (Cys12) of KRAS (G12C). However,
SML-8-73-1 appears to be cell impermeable due to possessing two
negative charges''>. SML-10-70-1, a caged version of SML-8-73-1,
can penetrate cells but lacks selectivity and antitumour activity''®.
Fortunately, another attractive target has been identified: the thiol
group in the cysteine residue forms a disulphide bridge with
specific inhibitors with prolonged target engagement. Notably, this
strategy exhibits not only remarkable selectivity but also greater
activity because Cys12 is located near switch regions involved in
the interaction with effectors and the nucleotide. Novel inhibitors
targeting KRAS (G12C) have displayed promising results in
preclinical and clinical trials, showing promise for targeting KRAS,
which was considered to be undruggable in the past (Fig. 5).

The discovery of a new allosteric regulatory site in KRAS (G12C)
Initially, Shokat and colleagues designed a sequence of small
molecule compounds based on the specific nucleophilic properties
of the mutant half cystine thiols for targeting KRAS (G12C)""". The
crystal structure of compound 6 combined with the KRAS (G120)-
GDP complex clearly indicates that compound six extends from
Cys12 into an adjacent pocket named the switch-ll pocket (S-IIP),
rather than binding to the nucleotide pocket'"”. Notably, S-IP is not
obvious in other published structures of other KRAS or isoforms,
although a groove is visible in some cases''®'", Shokat and
colleagues changed the drug-design strategy to focus on acryla-
mides, vinyl sulfonamides and carbon-based electrophiles rather
than continuing with disulfide-based compounds. This strategy was
not only chemically selective but irreversible. Finally, they obtained
the most potent acrylamide 12. Cells containing the KRAS (G12Q)
mutation exhibited reduced viability and increased cell apoptosis
when treated with compound 12 compared with cells without the
KRAS (G12C) mutation'"”. Overall, a new allosteric pocket in KRAS
(G12€) and relatively specific inhibitors were identified, providing
structure-based validation that KRAS is targetable®®,

Preclinical exploration of KRAS (G12C) inhibitors

The discovery of a new allosteric site has reignited researchers’
enthusiasm for targeting KRAS (G12C). Based on previous
compounds reported by Shokat and colleagues, a series of
compounds were constantly developed to seek the path to
success, including ARS-853 and ARS-1620 (Fig. 4b). ARS-853 was
developed from first-generation compounds 6 and 12 by
optimising electrophilic localisation and modifying the scaffold
that interacts with a hydrophobic portion of the S-IP™2%'2,
Studies have shown that ARS-853 inhibits the KRAS (G12C) protein
by locking it in the inactive state of the GDP-GTP binding state
cycle. Increasing evidence suggests that KRAS mutations are
unequal and that different KRAS mutations reflect biological
heterogeneity'?2. Furthermore, by using ARS-853 as a molecular
tool, a study found that KRAS (G12C) is rapidly cycling rather than
in a statically active state, that KRAS (G12C)-mediated signalling
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can be regulated by upstream effectors, and that cell viability and
growth depend on KRAS mutations to varying degrees even
within KRAS®'? cancer cell lines'2%'%3,

ARS-1620 is the first proof-of-concept molecule to demonstrate
the feasibility of targeting KRAS (G12C) in vivo. According to the
cocrystal structure, ARS-1620 possesses an additional covalent
interaction with His95 of KRAS (G12C), which provides a more
stable and preferred conformation than ARS-853'?*. In brief, ARS-
1620 is an orally selective and potent agent in a variety of models.
An apparent paradox is why a target without conventional binding
pockets can nevertheless be inhibited by small molecules with
powerful efficiency from the nanomolar to the low micromolar
range. The study of Rasmus Hansen and colleagues demonstrated
that inhibitors exhibit an only weak and reversible binding affinity
for KRAS (G12Q), but the chemical reaction between the targeted
cysteine and inhibitors is powerful and is accelerated by KRAS
(G12Q) as an enzyme that specifically catalyses covalent bond
formation between groups with low intrinsic reactivity'?>. There-
fore, the main driver of potency is KRAS-mediated acceleration of
the chemical reactions of specific KRAS (G12C) inhibitors.

Clinical exploration of KRAS (G12C) inhibitors

AMG510 (sotorasib). AMG510 is the first small molecule inhibitor
specifically targeting KRAS (G12C) to enter clinical trials
(NCT03600883), which specifically and irreversibly bind to Cys12
in the inducible S-IIP and lock KRAS (G12C) protein in an inactive
status'?®'?’, AMG510 is additionally combined with a novel
surface groove formed by an alternative orientation of His95 on
KRAS, resulting in a tenfold improvement in efficiency compared
to ARS-1620'?%'% Excitingly, AMG510 was approved by the US.
Food and Drug Administration, on May 28, 2021, as the first
treatment for adult patients with NSCLC whose tumours harbour
KRAS (G12C) mutations and who have received at least one prior
systemic therapy'3°. This is a milestone because it is the first drug
to directly target mutated KRAS. The full Phase | cohort (n = 129)
receiving daily AMG510 monotherapy in the clinical trial
(NCT03600883) was completed'>". This monotherapy trial showed
responses across all dose levels tested, and no dose-limiting
toxicity or treatment-related deaths were observed'’. A total of
56.6% patients (n=76) reported treatment-related adverse
events, of which 11.6% of patients (n = 15) reported grade 3 or
4 events, including reversible elevations in alanine aminotransfer-
ase levels, diarrhoea, vomiting, and anaemia. In the subgroup with
NSCLC (n = 59), the ORR and DCR were 32.2% (n = 19) and 88.1%,
respectively. Simultaneously, a median progression-free survival of
6.3 months and the recommended phase Il dose of 960 mg daily
were identified'®’. On January 28, 2021, Amgen revealed the
results of a phase Il clinical trial (NCT03600883) evaluating 126
patients with KRAS (G12C)-mutant NSCLC. Surprisingly, an ORR of
37.1%, including 3 complete responses and 43 partial responses,
and a DCR of 80.6% were reported. A median duration of response
of 10 months and a median progression-free survival of 6.8 months
were also confirmed, in line with earlier Phase | results. The
security of AMG510 was further confirmed. Grade 3 adverse
events were reported in 19.8% of patients, and grade 4 adverse
events were reported in only 1 patient (0.8%), with no treatment-
related deaths. These attractive results make AMG510 the first
approved drug to treat KRAS (G12C)-mutant NSCLC. There are
other ongoing clinical trials to further assess AMG510, such as
NCT04185883, which will assess the safety and feasibility of
various combinational therapies; NCT04303780, which compares
AMG510 with docetaxel; and NCT04625647, which will evaluate
the response rate of AMG510 in participants with KRAS (G12C)-
mutated stage IV or recurrent nonsquamous NSCLC (Table 2).

MRTX849 (adagrasib). The ongoing clinical study of MRTX849

also offers hope for the successful targeting of KRAS (G12C)
proteins'*2. The preliminary results of a multiple expansion study

Signal Transduction and Targeted Therapy (2021)6:386



KRAS mutation: from undruggable to druggable in cancer
Huang et al.

a. New strategies for targeting KRAS (G12C)
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Fig. 5 Current targeted strategies for KRAS (G12C). a Despite the mutation occurring in KRAS, KRAS (G12C) still continues to perform the
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(G12Q) covalent inhibitors, LC-2, an endogenous KRAS (G12C) degrader,

development and chemical structures of KRAS (G12C) inhibitors

evaluating MRTX849 (NCT03785249) were reported at the 2019
EORTC-NCI-AACR annual symposium. In the cohort of 12 patients,
including six NSCLC patients, most patients received a 600 mg
dose twice daily, of whom three NSCLC patients reported
unconfirmed partial responses and other patients experienced
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has been developed to promote KRAS (G12C) degradation. b The

stable disease. MRTX849 was well tolerated in most patients with
only grade 1 adverse events, of which diarrhoea and nausea were
the most common. Another phase I/1l study (NCT04330664) is also
ongoing to assess MRTX849 in combination with NO155, an SHP2
inhibitor, in patients with the KRAS (G12C) mutation (Table 3).
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Table 2. The clinical development of KRAS (G12C) inhibitors

ClinicalTrials.gov registration Drug Disease setting Study phase Recruitment status
NCT03600883 AMG510 Solid tumours 1/ Recruiting
NCT04667234 AMG510 Metastatic NSCLC | Recruiting
NCT04380753 AMG510 Metastatic solid tumours | Recruiting
NCT04625647 AMG510 Nonsquamous NSCLC Il Recruiting
NCT03785249 MRTX849 CRC; NSCLC 111 Recruiting
NCT04165031 ARS-3248 CRC; NSCLC | Completed
NCT04165031 LY3499446 Solid tumours 1/ Terminated
NCT04585035 D-1553 Solid tumours 1/ Recruiting
NCT04699188 JDQ443 Solid tumours 1/ Recruiting
NCT04449874 GDC-6036 Advanced Solid Tumours la/l b Recruiting

NSCLC: nonsmall-cell lung cancer; CRC: Colorectal adenocarcinoma. Data from ClinicalTrial.gov, accessed September 18, 2021

Table 3. Combination therapy of KRAS (G12C) inhibitors in clinical trials

ClinicalTrials.gov registration Drug

Disease setting Study phase Recruitment status

Combined with chemotherapy

NCT04303780 AMG510 Docetaxel
NCT04185883 AMG510 Docetaxel
NCT04165031 LY3499446 Docetaxel
NCT04685135 MRTX849 Docetaxel
Combined with targeted therapy

NCT04185883 AMG510 Erlotinib
NCT04185883 AMG510 TNO155
NCT04185883 AMG510 Selumetinib
NCT04185883 AMG510 Everolimus
NCT03785249 MRTX849 Afatinib
NCT03785249 MRTX849 Cetuximab
NCT04793958 MRTX849 Cetuximab
NCT04330664 MRTX849 TNO155
NCT04165031 LY3499446 Abemaciclib
NCT04165031 LY3499446 Erlotinib
NCT04449874 GDC-6036 Erlotinib
NCT04449874 GDC-6036 Cetuximab
NCT04449874 GDC-6036 Bevacizumab
Combined with immune therapy

NCT03600883 AMG510 Pembrolizumab
NCT03600883 AMG510 Atezolizumab
NCT03785249 MRTX849 Pembrolizumab
NCT04613596 MRTX849 Pembrolizumab
NCT04449874 GDC-6036 Atezolizumab

NSCLC 1] Recruiting
Advanced NSCLC I'b Recruiting
Solid tumours I/ Terminated
Metastatic NSCLC 1] Recruiting
Solid tumours I'b Recruiting
Solid tumours I'b Recruiting
Solid tumours I'b Recruiting
Solid tumours I'b Recruiting
NSCLC I/ Recruiting
Solid tumours I/ Recruiting
Metastatic CRC 1] Recruiting
NSCLC I/ Recruiting
Advanced NSCLC I/ Terminated
Advanced NSCLC 171 Active not recruiting
Solid tumours la/l b Recruiting
Solid tumours la/l b Recruiting
Solid tumours la/l b Recruiting
NSCLC I Recruiting
NSCLC I Recruiting
NSCLC I/ Recruiting
NSCLC I Not yet recruiting
Solid tumours la/lb Recruiting

NSCLC: nonsmall-cell lung cancer; CRC: colorectal adenocarcinoma. Data from ClinicalTrial.gov, accessed September 18, 2021

Other specific KRAS (G12C) inhibitors from other companies are
also under investigation in clinical trials, including LY3499446, D-
1553, and ARS-3248/JNJ-74699157, which are next-generation
ARS-1620 inhibitors ~ (NCT04006301, NCT04165031, and
NCT04585035) (Table 2). Notably, the first KRAS (G12C) inhibitor,
LY3499446, from Eli Lilly, has been discontinued due to safety
concerns, but at the 2021 AACR meeting, they presented
preclinical results for another inhibitor, LY3537982. In KRAS
(G12C) mutant H358 cells, the inhibitory activity of LY3537982
was at least 10 times higher than that of AMG510 and MRTX849.
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We look forward to the further results of LY3537982 in preclinical
and clinical trials.

Proteolysis-targeting chimaeras (PROTACs) targeting KRAS (G12C)
proteins

Compared with direct inhibition, degradation could be a more
potent strategy that affects cell proliferation and downstream
signalling responses'®*'34, Based on covalent inhibitors targeting
KRAS (G12C), PROTACs, as small molecule degraders, are designed
to target KRAS (G12C). The E3 ligase is able to ubiquitinate
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proximal lysine residues of KRAS (G12C) by PROTACs that
simultaneously engage KRAS (G12C) and E3 ligase substrate
receptor proteins, such as the cerebellum (CRBN). A covalently
degrading molecule based on a thalidomide scaffold and ARS-
1620 has been reported to degrade the artificial GFP-KRAS (G12C)
fusion protein in reporter cells'**. Subsequently, LC-2, the first
endogenous KRAS (G12C) degrader, was reported to rapidly
engage and continuously degrade KRAS (G12C), which consisted
of MRTX849 and the VHL E3 ligase ligand'®%. LC-2-mediated KRAS
(G12C) degradation requires an intact proteasome system and
VHL E3 ligase complex assembly, of which neddylation is
important for the formation and function of the VHL E3 ligase
complex; nevertheless, the lysosomal pathway is nonessential>’.
After treatment with LC-2, multiple cancer cells demonstrated ERK
phosphorylation inhibition'3. Moreover, there has been an unmet
need for reversible degraders attacking KRAS (G12C) because LC-2
cannot be involved in multiple catalytic cycles of degradation,
limiting its potency due to its covalent nature'*®, The develop-
ment of PROPACs is considered to be an important direction for
antitumour therapy and has broad prospects, although in vivo
data have yet to be obtained (Fig. 5a).

TARGETING OTHER KRAS MUTATIONS AND INDIRECT
STRATEGIES

Targeting other KRAS mutations

The successful development of KRAS (G12C) inhibitors is
dependent on the covalent inhibition of cysteine and high
GTPase activity of KRAS (G12C), which is not fully present in other
KRAS-mutant types''®. New strategies are therefore needed to
target other common KRAS mutations, such as KRAS (G12D) and
KRAS (G12V). By screening a random peptide library for purified
recombinant KRAS (G12D) exhibited on the T7 phage, researchers
obtained a novel and selective inhibitory peptide (KRpep-2d) to
KRAS (G12D), as in the first report of a KRAS (G12D)-selective
inhibitor'*°. Then, KS-58 based on KRpep-2d was reported as the
first KRAS (G12D)-selective inhibitory peptide presenting in vivo
anticancer activity'*°. Another study suggested that CRISPR/Cas9
could be delivered via exosomes to target KRAS (G12D) in models
of pancreatic cancer'*'. Koide and his colleagues successfully
developed a noncovalent inhibitor, termed 12VC1, that can highly
selectively bind to the active states of KRAS (G12V) and KRAS
(G120) in vivo and in vitro'*2 Based on this monomer, PROTAC-
like fusion proteins were developed, which could electively and
effectively increase the degradation of KRAS (G12V). Using a
structure-based drug design, Kessler and colleagues discovered
that Bi-2852, a nonspecific KRAS inhibitor, binds with nanomolar
affinity to a pocket between switches | and Il on active and
inactive KRAS in vitro'*. Overall, the development of specific
inhibitors for other KRAS mutations is still in its infancy and is a
long way from reaching clinical trials. However, the emergence of
new approaches also offers hope for successfully targeting
different KRAS-mutated subtypes.

Indirect strategies of targeting KRAS

For more than 30 years after its discovery, KRAS was considered
undruggable target due to the intrinsic characteristics of KRAS
proteins. The KRAS is small and has a considerably smooth and
shallow surface, resulting in difficulty of small molecule binding
to the KRAS. There is no other pocket on the surface of KRAS that
can bind to small molecules except the GTP binding pocket, but
targeting the GTP binding pocket is quite difficult'**. Because
there is a quite high concentration of GTP in cells under
physiological conditions and the affinity between the GTP and
KRAS reaches the picomolar level, GTP almost monopolises the
sole pocket on the surface of KRAS'**. These inherent conditions
make it nearly impossible to develop competitive KRAS
inhibitors. Therefore, various explorations for indirectly targeting
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KRAS have been performed over the past 40 years, of which most
strategies are nonspecific and inefficient, including reducing the
expression of KRAS, interrupting the membrane location of KRAS,
interfering with the interaction between the KRAS and its
effectors, inhibiting upstream and downstream signalling, and
synthetic lethality approaches such as cyclin-dependent kinase
inhibitors. However, most of these strategies have failed due to a
lack of activity or selectivity.

Reducing the expression of KRAS

RNA-based approaches to degrade overexpressed mRNAs have
been shown to be effective and feasible in vivo, as exosomes can
act as effective vectors for short interfering RNAs to mediate entry
into tumour cells'**'*”. Among them, progress has been made in
the development of antisense oligonucleotides (ASOs) targeting
KRAS in lung cancer. AZD4785, developed by Macleod and
colleagues, is an ASO targeting KRAS with a novel 2-4-
constrained ethyl modification'*®. KRAS expression was signifi-
cantly reduced in subcutaneous tumours after treatment with
AZDA4785, but the reduction was not obvious in clinical trials
(NCT03101839).

Interrupting membranal location of KRAS

Only membrane-bound KRAS can be activated and activate
downstream signalling pathways. Therefore, preventing mem-
brane localisation after KRAS translation should be an effective
strategy. Farnesyltransferase was first identified as a potential
therapeutic target at an early stage due to its key role in the
localisation of KRAS'. Of several powerful farnesyltransferase
inhibitors (FTls), tiffany and lonafarnib have entered phase IlI
clinical trials'*®. However, the treatment of KRAS-driven cancers
ultimately failed due to the lack of antitumour effects'".
Subsequent findings indictaed that KRAS was successfully localised
by modification of prenylation by geranylgeranyl transferase type
1-mediated substitution pathways in the absence of farnesyltrans-
ferase'>2. However, cotargeting of farnesyltransferase and geranyl
transferase also did not produce significant antitumour effects'>,
Salirasib, as a second-generation FTI, was developed but termi-
nated in phase Il trials due to lack of efficacy’>*. Other post-
translational modification enzymes, such as RAS-converting
enzyme 1 or isoprenyl carboxyl methyltransferase may also be
potential therapeutic targets to block KRAS membrane localisation,
especially phosphodiesterase-6, which assists the transport of KRAS
from the Golgi apparatus to the plasma membrane'®. However,
relevant studies are still in the preclinical stage and different
studies have presented puzzling and different results that need to
be further investigated in the future'%"’.

Inhibiting KRAS-mediated signal transmission

Protein-protein interactions are an important form of signalling.
Therefore, interference in the interaction between the KRAS and
other proteins may be a potential therapeutic strategy to block
KRAS-mediated signal transmission. GEFs are a class of key
proteins of KRAS interaction, such as SOS1. SOS1 inhibitors have
also been designed and synthesised to block KRAS-SOS1
interaction'®, Of them, BI1701963, an orally bioavailable pan-
KRAS inhibitor, has entered a phase | clinical trial (NCT04111458),
which has an obvious effect in inducing tumour senescence. In
addition, stapled peptides, which can block the interaction of
KRAS with SOS1 based on a stabilised a-helical structure, are also
considered promising as an effective strategy to interfere with the
interaction between KRAS and SOS1'°°. In addition, small
molecules that directly block the interaction of KRAS and
downstream effectors, primarily RAF kinases, have not yet been
identified, because the interface is part of an antiparallel f-sheet
where no appropriate pockets are offered for binding a small
molecule at high affinity'®°. Through continuous modification and
optimisation, effective cyclic peptides have been designed to
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prevent the binding of KRAS and RAF, such as cyclorasin 9 A and
cyclic peptide kD2'6''%2, Inhibition of key KRAS upstream and
downstream molecules can also effectively inhibit KRAS-mediated
signal transduction, such as inhibiting upstream signalling, SHP2,
and inhibiting downstream signalling, the RAF-MEK-ERK pathway
and the PI3K-AKT-mTOR pathway. However, due to the extensive
cross-talk of KRAS-mediated signalling pathways, it is difficult to
achieve effective inhibition of signalling pathways only by
inhibiting a single key molecule, and joint inhibition of multiple
key molecules is often required.

Combination therapy with KRAS (G12C) inhibitors

KRAS (G12C) inhibitors have achieved surprising results in clinical
trials, and AMG510 has been successfully approved for applica-
tion in the clinic, achieving a breakthrough from scratch in the
development of KRAS inhibitors. However, the subsequent
acquired resistance greatly limits the application of KRAS
(G12Q) inhibitors. Combination therapy is an important and
prioritised strategy to increase efficacy, reduce toxicity and side
effects, and delay the acquisition of drug resistance. Either
preclinical or preliminary clinical data indicate that combina-
tional strategies can improve the antitumour efficacy of KRAS
(G12Q) inhibitors. A concerning problem with combination
therapy is that patients are often unable to tolerate it due to
severe side effects when two or more inhibitors are applied to
patients at the same time'®3. However, clinical results of KRAS
(G12Q) inhibitors showed that most patients tolerated treatment
well without serious adverse reactions. Therefore, KRAS (G12Q)
inhibitors could be used as a promising class of combinational
agents to achieve better efficacy (Fig. 6).

Combined with chemoradiotherapy

Chemotherapy remains an important tumour treatment strategy
for advanced cancer. However, the benefit to patients is usually
limited due to severe side effects and the rapid emergence of
drug resistance. The combination of conventional chemotherapy
drugs and novel drugs is often considered to increase the benefit
to patients. Covalent inhibitors targeting KRAS (G12C) combined
with conventional chemotherapy drugs may be a potential
strategy to improve efficacy. The study demonstrated that NSCLC
models with KRAS mutations displayed a greater sensitivity to
pemetrexed, and the expression of KRAS RNA changed after
treatment with pemetrexed, leading to decreased angiogenesis,
possibly because KRAS-mutant cells were more dependent on
the folate metabolic pathway'®*. It is worth noting that different
KRAS mutations differ in sensitivity to chemotherapy. For
instance, tumour models with KRAS (G12C) responded well to
taxanes and pemetrexed but responded poorly to cisplatin'®®.
The combination of AMG510 and carboplatin significantly
enhanced antitumour efficacy compared with AMG510 or
carboplatin alone'?%. The above evidence shows that improved
efficacy offers a sufficient theoretical basis for the application of
a combination of KRAS (G12C) inhibitors and chemotherapeutic
drugs in clinical trials. In addition, the clinical results of AMG510
and MTRX849 showed fewer adverse reactions and better
tolerance, and the two resulted in more benefits and less
toxicity when used in combination'?’.

In addition to the effect on chemotherapy, patients with
KRAS-activated mutations often have radiation resistance and
poor prognosis'®. It has been suggested that radiation
resistance is realised by EGFR-mediated chromatin condensation
in KRAS-mutated lung cancers'®%'%’, Radiotherapy resistance of
CRC with KRAS mutations was realised by rapid upregulation of
heterogeneous nuclear ribonucleoprotein KhnRNP K, and MEK
inhibition effectively increased radiotherapy sensitivity of
CRC'®8, Radiotherapy, as a means of cancer treatment, is widely
used in many types of cancer. In radiation-naive tumours with
KRAS mutations, it has been confirmed that radiotherapy
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combined with PD-1 antibody has an obvious synergistic
effect'®®. Therefore, KRAS inhibitors in combination with radio-
therapy may provide unexpected benefits to patients harbour-
ing KRAS mutations.

COMBINED WITH TARGETED THERAPY

Combined with upstream molecules

RTKs inhibitors. The reactivation of KRAS and its downstream
effectors induced by adaptive receptor tyrosine kinases (RTKs) is
one of the mechanisms of drug resistance, so the combination of
KRAS (G12C) inhibitors and drug-targeting RTKs may be a
promising therapeutic strategy. The combined efficacy of KRAS
(G12Q) inhibitors and RTK inhibitors was explored in two
studies’%'?'. The combined action of RTK inhibitors and ARS-
853 significantly enhanced the antitumour activity in different
cells, and the effects of different RTK inhibitors were different in
KRAS (G12C) mutant cells, indicating the heterogeneity of the RTK
action. Subsequent studies further indicated that the phosphor-
ylation levels of several RTKs in different KRAS (G12C) models were
increased and showed high heterogeneity. The synergistic effect
of several RTK inhibitors and ARS-1620 showed strong antitumour
activity'’°. Unfortunately, the synergistic results of these combina-
tions are not generally effective across different KRAS (G12Q)
tumour models. Therefore, the efficacy of a single RTK inhibitor
combined with KRAS (G12C) inhibitors may not be consistent in
cancer treatment.

SHP2 inhibitors. Given the inconsistent effects of single RTK
inhibitors, inhibiting common downstream nodes of multiple RTK
signalling pathways may be broadly effective in overcoming the
adaptive reactivation of KRAS'’°. Src homology region 2 domain-
containing phosphatase 2 (SHP2) functions as a convergent node
downstream of multiple RTKs to regulate RAS activation, which is
encoded by tyrosine-protein phosphatase nonreceptor type11'’",
RTKs normally recruit the GRB2-SOS1 complex to activate RAS and
do not depend on SHP2'”2, However, SHP2 is necessary for the
proliferation of KRAS (G12C) mutant cancer in vivo, and adaptive
reactivation of KRAS is heavily dependent on SHP2'7377%, SHP2
inhibition has the potential to increase KRAS-GDP occupancy and
suppress RAS-mediated signalling as well as adaptive signalling
driving resistance to therapy'’. For instance, the combination of
ARS-1620 with SHP-099, an SHP2 inhibitor, significantly reduced
tumour volume in tumour models with KRAS (G120)'"%'”7. The
combination of MRTX849 with RMC-4550, another SHP2 inhibitor
that also exhibited higher antitumour activity in both the
sensitive and refractory MRTX849 models by further inhibiting
the KRAS-mediated signalling pathway'?’. The combination of
TNO155 with EGFR inhibitors, RAF inhibitors, and KRAS (G12C)
inhibitors has shown synergistic effects in preclinical studies,
suggesting that TNO155 effectively blocks feedback activation'”®,
On the basis of these compelling preclinical data, multiple SHP2
inhibitors, such as JAB-3068, RLY-1971, and TNO155, have entered
early clinical trials (NCT03518554, NCT04252339, and
NCT03114319, respectively), and the combination of KRAS
(G12C) and the SHP2 inhibitor is also testing in early-phase
clinical trials (NCT04185883, NCT04330664).

SOST1 inhibitors.  SOS1 is another common downstream effector
of multiple RTK signalling pathways. There is increasing evidence
that KRAS (G12C) rapidly cycles in the GDP or GTP binding status
rather than being continuously active in the GTP-KRAS status,
resulting in abnormal activation of downstream signals. This
indicates that KRAS (G12Q) is still sensitive to GEF (such as SOS1)
regulation. A synergistic effect of BAY293, a potent SOS1
inhibitor, with ARS-853 has been reported because BAY293 is
capable of disrupting the KRAS-SOS1 interaction to inhibit the
activation of KRAS'7®,
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Combined with downstream molecules

KRAS is cross-linked with various signalling pathways and plays a
pivotal role in cell survival and proliferation. In turn, downstream
effectors influence KRAS function to different degrees. For
instance, ERK3 activity is required for KRAS-driven tumorigenesis
in vitro, and ERK3 deficiency inhibits the oncogenic growth of
KRAS (G12C)-mutant NSCLC in vivo, indicating the application of
ERK3 inhibitors in KRAS (G12C)-driven tumours'®. Recent studies
have found that BRAF/ERK inhibitors can release the feedback
inhibition of upstream RTK and RAS signals, and the liberation of
RTK and RAS signals can facilitate other signalling pathways, such
as the PIBK/AKT/mTORC1 pathway, which improves cell growth
and proliferation'®’. The combination of a PI3K inhibitor and a
KRAS (G12Q) inhibitor showed obvious synergistic effects in
various models. In addition, targeting ATK or mTOR, important
PI3K downstream effectors, has been proven to be effective when
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used in combination with KRAS (G12C) inhibitors'?®'2%'82 For
instance, the combined use of mTOR inhibitors, IGF1R inhibitors,
and ARS-1620 significantly enhanced tumour regression with low
toxicity compared to combined MEK inhibitors or ARS-1620 alone
in a series of KRAS-driven mouse lung cancer models'®

Combined with cell cycle checkpoint

Excessive proliferation is a common feature of tumour cells, and
CDK4/6 is a key regulator of the cell cycle, playing a key role in the
G1-to-S-phase transition. CDK4/6 can be affected by KRAS through
multiple signalling pathways, such as the RAF-MEk-ERK and PI3K-
Akt pathways. Studies have shown that the CDK4/6 inhibitor
palbociclib enhances the overall effect of a KRAS inhibitor (ARS-
1620). Similarly, another study indicated that MRTX849 and
palbociclib, in several MRTX849-refractory models, exhibited
significant general tumour regression, which may be due to
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increased inhibition of the retinoblastoma protein/E2F transcrip-
tion factor pathway'?®. In addition to CDK, aurora kinase A
(AURKA) plays an important role in the cell cycle by ensuring the
proper separation of chromosomes and the smooth completion of
cytokinesis during mitosis. ARS-1620 was observed to have a
significant synergistic effect with alisertib, a specific AURKA
inhibitor, for the treatment of ARS-1620-refractory KRAS (G12C)
mutant cancer. In terms of mechanism, targeting AURKA not only
affects the normal proliferation division of cells but also disrupts
the stable interaction between KRAS and c-RAF, resulting in
difficulty in RAF activation'””. Several clinical trials are currently
underway in which combinations of CDK4/6 inhibitors have been
added (Table 3).

Combined with synthetic lethality screen

Compared with wild-type KRAS cells, mutant KRAS-driven tumour
cells may be more dependent on certain genes that are necessary
for the maintenance of the KRAS-driven cellular state. Targeting
these vulnerable genes in synthetic lethality screens could serve
as an alternative approach, called synthetic lethality screens. Some
large-scale genetic screening has been performed to find
vulnerable genes that are uniquely essential to KRAS-mutant
tumours'®85, The study found that in addition to KRAS itself, the
critical genes for Kras mutation were RAF1 (encoding CRAF) and
SHOC2'®’. Genetic deletion of CRAF significantly reduced tumour
size in a KRAS (G12V) mouse model, which was independent of
the function of CRAF kinase'®8, SHOC2 enhances RAF dimerization
and is necessary for maximum ERK activity. Ablation of SHOC2
reduced the growth of KRAS-mutant NSCLC cells and sensitised
the cells to MEK inhibition'®°. Another experiment showed strong
enrichment of genes with mitotic functions in a genome-wide
RNAi screen of KRAS-mutant cells'®®, In addition, genome-wide
CRISPR/Cas9-based genetic screening has been widely used to
find ideal synthetic lethal targets in KRAS-mutated tumours'®.
Unfortunately, the degree of overlap between these screen results
is low, except for the proteasome system, and has not yet led to
successful clinical approaches. However, the successful develop-
ment of KRAS (G12C) inhibitors provides a new direction for KRAS
mutation-related synthetic lethality. One study proposed that the
bypass pathways (defined as collateral dependencies (CDs)) that
maintain cancer cell survival may be different from those
dependent on the excessive activation of KRAS signalling when
acute deprivation drives oncogene activity with KRAS (G12CQ)
inhibitors and target CDs will promote the response to KRASG12C
inhibitors'®’. At the same time, two classes of combination
strategies targeting CDs are proposed to either strengthen KRAS
(G12C) target engagement (namely, EGFR, FGFR, or SHP2
inhibitors) or independently restrain persistent survival pathways
(namely, PI3K, or CDK4/6 inhibitors)'".

In general, synergistically targeting upstream molecules of KRAS
is considered to offer advantages over synergistically targeting
downstream molecules of KRAS. Synergistic targeting of upstream
molecules can effectively inhibit multiple downstream pathways,
avoiding the activation of other parallel signalling pathways that
can induce tumour growth. However, the identification of
appropriate upstream targets for KRAS is challenging and risky
because cotargeting upstream targets may bring more side
effects'®2. Synthetic lethal approaches using genome-wide screen-
ing are also promising, but more detailed screening conditions are
needed to address complex tumour types. In addition, effective
synthetic lethal targets may be defined as subsets of tumours. For
instance, KRAS-mutated tumours with KEAP1 mutations and
activation of NRF2 antioxidant programmes make them more
susceptible to interference with the glutathione pathway'®>.

Combined with immune therapy

In recent decades, great progress has been made in immunother-
apy for advanced cancer'®. There has been substantial clinical
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evidence that the survival of patients with advanced cancer is
improved by immune checkpoint inhibitors (ICls), especially by
blocking the immune checkpoint axis involved in programmed
cell death 1 (PD-1) and programmed death ligand 1 (PD-L1)"9>'%°,
PD-1/PD-L1 inhibitors such as durvalumab, nivolumab, pembroli-
zumab, and atezolizumab have entered the clinic as first-line or
second-line therapy for advanced NSCLC'?®""%8, However, clinical
data from anti-PD therapy indicated that only approximately
15-25% of patients with NSCLC responded to ICls'®°. Among
various drug resistance factors, the TME plays a significant role in
the host response to immunotherapy®®. Targeted therapy usually
has a profound immunomodulatory effect on the TME, so targeted
therapy combined with immunotherafy should be a strong
combinational therapeutic strategy®°'2%,

Novel KRAS (G12C) inhibitors induce a shift of the TME from
immunosuppressive to immunoreactive. Increasing evidence
suggests that KRAS mutation preferentially induces an immuno-
suppressive TME by promoting the expression of immunomodu-
latory factors of tumour cells, such as transforming growth factor-
B, interleukin-6, and interleukin-102°®, KRAS inhibition might be
able to block the effect. A relative study has shown that the
infiltration of CD8 + T cells, macrophages and dendritic cells in the
TME is significantly increased after AMG510 treatment, including
CD103 + cross-presenting dendritic cells, which are necessary for
T cell priming, activation, and recruitment'?®. In general, AMG510
therapy contributes to the formation of a proinflammatory
microenvironment and enhances immunosurveillance. Similarly,
MRTX849 treatment decreased intratumoural immunosuppressive
myeloid-derived suppressor cells and M2-polarised macrophages
and increased immune-promoting M1-polarised macrophages,
dendritic cells, and CD4 + and NKT cells in KRAS (G12C) tumours
by altering the expression of tumour RNA and protein implicated
in the presentation of tumour antigens or mediating an
immunosuppressive TME?®*, These results agree with a previous
study showing that patients with KRAS mutations usually have an
inflammatory TME and higher tumour immunogenicity, leading to
a better response to PD-1/PD-L1 inhibitors*°°. Notably, the durable
antitumour response to KRAS (G12C) inhibitors depends on the
engagement of the immune system. Treatment with high doses of
AMG510 displayed sustained tumour regression in immunocom-
petent mouse models, whereas tumours recovered rapidly after a
short response in immunocompromised mouse models'?®, These
studies suggest that specific inhibitors targeting KRAS (G12C) in
tumour cells profitably result in a turn from an immunosuppres-
sive to an immunocompetent TME; thus, the combination of KRAS
(G12Q) inhibitors and immune checkpoint inhibitors is a promising
reciprocal strategy for patients with KRAS (G12C) mutant NSCLC.

Combined with tumour metabolism therapy

One of the hallmarks of cancer is the reprogramming of cellular
metabolism, in which the tumour efficiently uses substances in the
environment to provide more energy and biomacromolecules to
meet the nutritional needs of the tumour’s uncontrolled prolifera-
tion?°®. Many studies have shown that KRAS mutations can lead to
tumour-specific metabolic changes, thereby regulating oncogenic
signalling networks and promoting tumour progression®%’2%,
Mutant KRAS upregulates the expression of the GLUT1 glucose
transporter to promote glucose uptake and glycolytic rate-limiting
enzymes hexokinase 1 and 2 to increase glycolytic activity?®®2°.
Mutant KRAS also promotes the generation of precursors of many
biomacromolecules, such as the precursor for lipid and protein
glycosylation through the hexosamine biosynthesis pathway®'' and
the backbone for nucleic acid production?'?. In addition to affecting
glycolysis, mutant KRAS promotes tumorigenesis and development
by regulating glutamine decomposition, lipid metabolism and fatty
acid biosynthesis®'>™'%, In addition, mutated KRAS meets its own
needs of high nutrition and rapid metabolism through high levels
of autophagy and macropinocytosis®'’2"®
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The close association between the KRAS signalling and cellular
metabolic remodelling makes it possible to exploit KRAS-
associated metabolic fragility to treat KRAS-driven cancers®®. As
expected, targeted metabolic enzymes have been shown to be
effective in some KRAS-mutant cancer cell lines and in mouse
models?®'??2, Some clinical trials are underway targeting the
metabolic pathways of KRAS mutant cancers, including strategies
to combat glutamine breakdown and autophagy. Indeed,
synergistic effects of several metabolic pathway inhibitors in
combination with KRAS (G12C) inhibitors, such as the mTOR
inhibitors and MRTX849, have been tested in preclinical settings
with encouraging results®?®>. However, much work remains to be
done to explore the therapeutic potential of targeting metabolic
changes in KRAS-driven cancers and synergistic effects with KRAS

inhibitors22*,

The acquired resistance mechanism of covalent KRAS (G12C)
inhibitors

Despite acquiring promising preliminary clinical results from
KRAS (G12Q) inhibitors, it should be cautioned that complete
responses are rare in clinical trials?*>??%, The diversity of tumour
status and the sensitivity to drugs in different populations
reasonably influence the drug effect because of various intrinsic
factors, including dependency on KRAS-mediated signalling and
concurrent genetic alterations?®’.  Simultaneously, rapidly
acquired drug resistance after promising initial responses is a
very common challenge in cancer monotherapy targeting
oncogenic driving enzymes. It is conceivable that there is a high
possibility of acquired resistance after treatment with KRAS
(G12CQ) inhibitors*®®. Several adaptive resistance mechanisms
have been proposed, including the release of ERK-mediated
feedback inhibition, activation of other bypasses, secondary
KRAS mutations, and multiple resistance mechanisms that occur
simultaneously (Fig. 7).

Experience gained from RAF and MEK inhibitors that have been
applied in the clinic and extensively studied in their resistance
mechanisms could provide important insights into the resistance
mechanisms to KRAS (G12C) inhibitors®*’. For instance, an
increased level of ERK phosphorylation after long-term treatment
with RAF or MEK inhibitors was reported, which may be caused by
the amplification of upstream drivers such as RTKs?*°. Similarly,
after ARS-1620 treatment for a period of time, the recovery of ERK
pathway flux was identified in vivo'?*, These results strongly imply
that treatment with KRAS (G12C) inhibitors triggers the release of
ERK-mediated feedback inhibition, which reactivates KRAS signal-
ling in turn to confer therapeutic resistance. The work of Ryan and
colleagues supported this view and proposed the mechanism of
drug resistance in which wild-type RAS, which could not be
specifically inhibited by KRAS (G12C) inhibitors, rapidly activated
the adaptive KRAS feedback pathway mediated by PTK after ARS-
1620 and AMG510 treatment in vitro'’°. Furthermore, no
prominent RTK was found to mediate this process in all KRAS
(G12C) tumour models, suggesting that this feedback may be
comodulated by multiple RTKs. In an in vivo study, KRAS (G12C)
colorectal cancer models had higher basal receptor tyrosine kinase
(RTK) activation, especially EGFR signalling, than NSCLC cell lines.
Therefore, KRAS (G12C) inhibition induced a higher rebound of
phosphorylated ERK than NSCLC cells, which resulted in a
generally poorer response to KRAS (G12C) inhibitors in CRC
patients than in NSCLC?'. Another in vitro study also supported
this view, but a diverse mechanistic interpretation suggested that
after treatment with KRAS (G12C) inhibitors, some cancer cells
were in a stationary state with low KRAS activity, while others were
equipped to resume proliferation due to the synthesis of new
KRAS (G12C)'"7%2 |n addition, it was reported that GEFR
promoted the activation of newly synthesised KRAS, and aurora
kinase A (AURKA) avoided drug-induced tumour cells by interact-
ing with KRAS (G12C) and the downstream protein c-RAF'”’.
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Epithelial-to-mesenchymal transition (EMT), another reason for
resistance, was proposed in the presence of KRAS (G12QC)
inhibitors, which activated the PI3K pathway to lead to
endogenous and acquired drug resistance. In EMT-induced cells,
Adachi and colleagues demonstrated that PI3K remained
activated in the presence of KRAS (G12C) inhibitors and was
dominantly regulated by the IGFR-IRS1 pathway®33. Another
in vitro study supported this view and proposed that epithelial
cells compensated through the ERBB2/3 signalling pathway,
while mesenchymal cells exhibited high basal and feedback
FGFR activation following inhibition of ERK and AKT signalling by
ARS-1620 treatment®**. In addition, considering that KRAS (G12C)
covalent inhibitors inactivate KRAS (G12C) by locking them in
GDP binding status, KRAS (G12C) could have a secondary
mutation that led to the loss of GTPase activity or decreased
affinity with GDP?*°, A clinical report described a patient with
KRAS (G12C) NSCLC who developed polyclonal acquired
resistance to MRTX849 and showed 10 heterogeneous resistance
changes in 4 genes, including KRAS, NRAS, BRAF, and MAP2K1.
Of note, the researchers identified an important mutation in
KRAS (Y96D) that affected the Switch-Il pocket, resulting in
resistance to all current KRAS (G12C) inhibitors?*°. At the same
time, researchers also reported a novel, functionally distinct
tricomplex KRAS (G12C) active-state inhibitor RM-018, which can
inhibit KRAS (G12C/Y96D) in vitro®*’. Evidence from in vitro
studies confirms this conclusion, and it is clear that either
AMG510 or MRTX849 results in a high proportion of KRAS
secondary mutations, and 12 different secondary KRAS muta-
tions are found. Different KRAS secondary mutations have
different resistances to different drugs. For example, G13D,
R68M, A59S and A59T mutations were resistant to AMG510 but
sensitive to MRTX849, while the Q99L mutation was resistant to
MRTX849 and remained sensitive to AMG510%%. The results of a
clinical cohort study (NCT03785249) further indicate that the
mechanisms of acquired resistance to KRAS (G12C) inhibitors are
quite complex, with multiple mechanisms occurring simulta-
neously in a single patient. Required KRAS alterations included
G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C and high-level
amplification of the KRASG12C allele. Acquired bypass mechan-
isms of resistance included MET amplification, activating muta-
tions in NRAS, BRAF, MAP2K1, and RET, oncogenic fusions
involving ALK, RET, BRAF, RAF1, and FGFR3, and loss-of-function
mutations in NF1 and PTEN®*°,

These studies partly explained why patients responded partially
but not completely to treatment with KRAS (G12C) inhibitors.
Furthermore, resistance could potentially occur via other undis-
covered mechanisms, even multiple mechanisms, emphasizing
the need to further investigate resistance mechanisms to select
optimal treatment regimens for best benefits.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Targeting KRAS is an attractive strategy because of the high
prevalence of KRAS mutations and its importance in initiating
and sustaining tumour growth. Because of its own character-
istics, targeting KRAS directly was once thought impossible.
With continuous active exploration, there have been several
novel insights to better understand KRAS mutations, promoting
the development of drugs targeting KRAS. Progress has been
made in targeting KRAS, especially targeting KRAS (G12C). New
techniques, such as NMR-based fragment screening, tethering,
and in silico drug design, have been used to discover novel
agents that bind directly to KRAS, although there is a long way
off to achieve targeted KRAS. Unconventional approaches of
peptides and proteins are also promising but face delivery-
related challenges. A class of covalently specific small mole-
cules that bind KRAS (G12C), such as AMG510 and MRTX849,
have been identified and have shown promising results in
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Fig. 7 Acquired resistance mechanism of covalent KRAS (G12C) inhibitor:
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clinical trials. However, there are also some problems to be
solved for its subsequent development, including the evalua-
tion of clinical safety in a larger cohort, the optimisation of
clinical efficacy and the overcoming of drug resistance. The
response to KRAS (G12C) inhibitors in patients is diverse,
implicating the existence of intrinsic resistance. Further
exploration of intrinsic resistance should be conducted to
identify biomarkers that indicate the appropriate population
and tumour type in the clinic. Meanwhile, the common
challenge for targeted drugs is the emergence of acquired
resistance. Further investigation is clearly warranted to com-
prehensively elucidate the mechanisms of acquired resistance
to obtain optimal treatment options.
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